构建高可用UPS供电系统
发布时间:2015.03.02 浏览次数:3165
可用性综合反映用户的真实需求,可靠性是影响可用性的因素之一
可靠性通过可靠度来衡量,可靠度的定义为:“给定系统在规定的工作条件下和预知的时间内持续完成规定功能的概率”。平均无故障工作时间MTBF(又称平均故障间隔时间)是决定电源系统可靠度的重要指标,MTBF可通过定量定时的工业试验或理论计算的方式获得。可用性是指产品在任一随机时刻需要开始和执行时,处于可工作或可使用状态的程度。可用性计算公式是:
式中,MTBF(MeanTimeBetweenFailures)是平均故障间隔时间,MTTR(Meantimetorepair)是平均修复时间。
可靠性的高低代表了电源系统是否容易故障。但是从实际应用的角度来说,任何设备都不可能保证在生命周期内完全不出故障,用户希望的是设备尽量不出故障,即使故障了也不要因故障导致业务受影响;如果业务受到了影响,那么应尽快消除故障。相比之下可用性的定义相比可靠性范围更加宽泛,对于可修复系统而言,它不仅涵盖了设备是否容易出错的问题,还涵盖了设备是否容易从故障中恢复。很明显可用性更加真实地反映了用户的需求。
在UPS行业,通常用几个“9”来代表系统可用性的高低。它是指一年内,系统在线运行及可进行生产的时间比例。比如6个“9”(可用性可达到99.9999%),即每年可能存在的宕机时间少于32秒。UPS系统的目标是尽量提高UPS电源系统的可用性,减少来自市电的影响。
提升供电可用性的途径
提高供电系统可靠性
从可用性计算公式可以看出,提高可靠性是提高可用性的一个重要途径。提高供电设备可靠性分四个层次:
第一,设计标准级。在产品规划设计阶段,应充分考虑产品的可能应用环境,选定相应的设计标准。对产品使用时可能的电气隔离、EMI/EMC、防雷、防浪涌、防噪*等电环境,防湿、防尘、防震、防腐等自然环境,及操作、维护、管理、搬运、安装等的人环境有充分的评估,从而构建产品合理的设计框架。
第二,器件级。在产品设计阶段,严格筛选器件,配合最优电路设计,并反复模拟各种恶劣环境测试器件应力裕量,保障各类元器件的可靠运行。对于关键器件如电解电容,如果电路设计不够优化,纹波电流过大,芯温过高,寿命将大大缩减,从而导致设备可靠性降低。散热风扇也要选择稳定性好性能优异的厂家提供,防止风扇故障导致功率模块温度上升,影响正常供电。
第三,部件级。部件的可靠性主要体现在它的稳定性和冗余性,在保证部件故障率降至最低的前提下,关键部件采用冗余设计是提高部件级可用性的最有效方法。
第四,方案级。通过优化系统设计,使供电系统运行可靠稳定,并且具备容错能力,整个供电路径无单点故障点。图1展示了一个无单点故障的冗余系统架构图。该方案由两套系统组成,在每套系统中,A4环节做到输入冗错,A5环节做到双回路互为备份,A6使用模块化UPS或者并机,A7为单电源负载提供双路保障,如果有条件A1和A2环节采用双路市电输入,单供电系统做到可靠冗余设计,然后方案采用2N容错设计,基本做到无单点故障点和在线维护。
可靠性通过可靠度来衡量,可靠度的定义为:“给定系统在规定的工作条件下和预知的时间内持续完成规定功能的概率”。平均无故障工作时间MTBF(又称平均故障间隔时间)是决定电源系统可靠度的重要指标,MTBF可通过定量定时的工业试验或理论计算的方式获得。可用性是指产品在任一随机时刻需要开始和执行时,处于可工作或可使用状态的程度。可用性计算公式是:
式中,MTBF(MeanTimeBetweenFailures)是平均故障间隔时间,MTTR(Meantimetorepair)是平均修复时间。
可靠性的高低代表了电源系统是否容易故障。但是从实际应用的角度来说,任何设备都不可能保证在生命周期内完全不出故障,用户希望的是设备尽量不出故障,即使故障了也不要因故障导致业务受影响;如果业务受到了影响,那么应尽快消除故障。相比之下可用性的定义相比可靠性范围更加宽泛,对于可修复系统而言,它不仅涵盖了设备是否容易出错的问题,还涵盖了设备是否容易从故障中恢复。很明显可用性更加真实地反映了用户的需求。
在UPS行业,通常用几个“9”来代表系统可用性的高低。它是指一年内,系统在线运行及可进行生产的时间比例。比如6个“9”(可用性可达到99.9999%),即每年可能存在的宕机时间少于32秒。UPS系统的目标是尽量提高UPS电源系统的可用性,减少来自市电的影响。
提升供电可用性的途径
提高供电系统可靠性
从可用性计算公式可以看出,提高可靠性是提高可用性的一个重要途径。提高供电设备可靠性分四个层次:
第一,设计标准级。在产品规划设计阶段,应充分考虑产品的可能应用环境,选定相应的设计标准。对产品使用时可能的电气隔离、EMI/EMC、防雷、防浪涌、防噪*等电环境,防湿、防尘、防震、防腐等自然环境,及操作、维护、管理、搬运、安装等的人环境有充分的评估,从而构建产品合理的设计框架。
第二,器件级。在产品设计阶段,严格筛选器件,配合最优电路设计,并反复模拟各种恶劣环境测试器件应力裕量,保障各类元器件的可靠运行。对于关键器件如电解电容,如果电路设计不够优化,纹波电流过大,芯温过高,寿命将大大缩减,从而导致设备可靠性降低。散热风扇也要选择稳定性好性能优异的厂家提供,防止风扇故障导致功率模块温度上升,影响正常供电。
第三,部件级。部件的可靠性主要体现在它的稳定性和冗余性,在保证部件故障率降至最低的前提下,关键部件采用冗余设计是提高部件级可用性的最有效方法。
第四,方案级。通过优化系统设计,使供电系统运行可靠稳定,并且具备容错能力,整个供电路径无单点故障点。图1展示了一个无单点故障的冗余系统架构图。该方案由两套系统组成,在每套系统中,A4环节做到输入冗错,A5环节做到双回路互为备份,A6使用模块化UPS或者并机,A7为单电源负载提供双路保障,如果有条件A1和A2环节采用双路市电输入,单供电系统做到可靠冗余设计,然后方案采用2N容错设计,基本做到无单点故障点和在线维护。